An elementary proof of a finite rigidity problem by infinitesimal rigidity methods

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite and Infinitesimal Rigidity with Polyhedral Norms

We characterise finite and infinitesimal rigidity for bar-joint frameworks in R with respect to polyhedral norms (i.e. norms with closed unit ball P a convex d-dimensional polytope). Infinitesimal and continuous rigidity are shown to be equivalent for finite frameworks in R which are well-positioned with respect to P. An edge-labelling determined by the facets of the unit ball and placement of ...

متن کامل

Rigidity of Infinitesimal Momentum Maps

In this paper we prove rigidity theorems for Poisson Lie group actions on Poisson manifolds. In particular, we prove that close infinitesimal momentum maps associated to Poisson Lie group actions are equivalent using a normal form theorem for SCI spaces. When the Poisson structure of the acted manifold is integrable, this yields rigidity also for lifted actions to the symplectic groupoid.

متن کامل

Infinitesimal Rigidity of Symmetric Bar-Joint Frameworks

We propose new symmetry-adapted rigidity matrices to analyze the infinitesimal rigidity of arbitrary-dimensional bar-joint frameworks with Abelian point group symmetries. These matrices define new symmetry-adapted rigidity matroids on grouplabeled quotient graphs. Using these new tools, we establish combinatorial characterizations of infinitesimally rigid two-dimensional bar-joint frameworks wh...

متن کامل

INFINITESIMAL RIGIDITY FO s R THE ACTION

Let r = SL(n, Il) or any subgroup of finite index. Then the action of r on Tn by automorphisms is infinitesimally rigid for n ;::: 7, i.e., the cohomology H I (r, Vec(Tn)) = 0 , where Vec(Tn) denotes the module of COO vector fields on Tn .

متن کامل

Notes for Rigidity Seminar Gromov’s Proof of Mostow Rigidity Theorem

we introduce a homological invariant of a manifold known as Gromov’s norm. Gromov’s norm of hyperbolic manifolds will be seen to be proportional to the volume of the manifold. The first striking consequence of this result is that the volume of a hyperbolic manifold is a topological invariant. Intuitively, Gromov’s norm measures the efficiency with which multiples of a homology class can be repr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1976

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1976-0420518-1